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Although time-periodic fluid flows sometimes produce mixing via Lagrangian chaos,the additional
contribution to mixing caused by non-periodicity has not been quantified experimentally. Here,
we do so for a quasi two-dimensional flow generated by electromagnetic forcing. Several distinct
measures of mixing are found to vary continuously with Reynolds number, with no evident change in
magnitude or slope at the onset of non-periodicity. Furthermore, the scaled probability distributions
of the mean Lyapunov exponent have the same form in the periodic and non-periodic flow states.

PACS numbers: 47.52.+j, 05.45.-a, 47.20.Ky

Fluid mixing, often aided by turbulent fluctuations, is
intimately connected with the transport of mass or en-
ergy. Understanding and characterizing mixing is crucial
to applications of scientific and technological importance,
ranging from the redistribution of heat in the atmosphere
and oceans to the efficient combustion of air-fuel mix-
tures. While turbulent flows generally produce strong
mixing, it is also well known that time-periodic flows,
even in two-dimesions, can also mix by Lagrangian chaos
or chaotic advection [1–3] which causes nearby fluid ele-
ments to separate exponentially in time. Although there
have been many studies of mixing in both periodic and
turbulent flows, a quantitative experimental comparison
of mixing properties in periodic and non-periodic regimes
for the same system is lacking.

One way to do this is to measure stretching fields [4, 5]
which provide the local deformation of an infinitesimal
circular fluid element over a finite time interval ∆t. The
logarithm of the stretching (after first dividing by ∆t)
gives the finite-time Lyapunov exponent 〈λ〉 for separa-
tion of nearby fluid elements at each point in a flow.
For periodic two-dimensional flows, stretching fields have
been shown to be closely related to the mixing of a pas-
sive scalar concentration field [6–8] . An equivalent of
stretching fields was first calculated numerically for a
non-periodic model system by Varosi et al. [9]. Mixing in
tidal currents were also analyzed using similar dynamical
systems methods [10]. Until recently [11], however, the
extension of these ideas to systems that are non-periodic
or weakly turbulent has been possible only in numerical
simulations [4].

Previous investigations of turbulent flows have consid-
ered passive scalar dynamics [12, 13] and Lagrangian
dispersion of particle clusters [14]. Lagrangian refer-
ence frame measurements such as single particle dynam-
ics [15], the separation of particle pairs [16, 17], and the
deformation of particle clusters [18] provide additional
insight into the deformation of fluid elements associated

with turbulence. Recently, stretching fields were ob-
tained [11] in a rotating turbulent three dimensional flow,
where the rotation imposes a quasi-two-dimensional con-
straint. Finite-time Lyapunov exponents were also mea-
sured experimentally for elastic turbulence in a complex
fluid [19] but the mechanisms for chaotic dynamics in
this very low Re system may be quite different from more
traditional fluid turbulence. Although these results show
promise for the general applicability of this technique to
more complex flows, experimental determination of Lya-
punov exponents as a function of Reynolds number, Re,
for turbulent flows has not been reported.

In the research reported here, we investigate mixing
in a conducting stratified fluid driven by a temporally-
periodic electric current in the presence of a spatially-
random array of magnets. We demonstrate using stretch-
ing field analysis that the mean finite-time Lyapunov ex-
ponent 〈λ〉 is proportional to the root-mean-square (rms)
rate of strain σrms and the exponential decay rate α of
the number of particles in a small region, as Re varies.
As the flow changes from periodic to non-periodic with
increasing Re, we find that the probability distribution
function (PDF) collapses to a universal curve and 〈λ〉 in-
creases smoothly without any discontinuity or change in
slope at the transition .

The experimental setup, described in detail else-
where [20], consists of a 3 mm conductive layer of sat-
urated salt water over a random magnet array with two
graphite electrodes at opposing ends and a mean mag-
net spacing of Lm = 2 cm. Between the salt water and
the magnet array is a 3 mm layer of Fluorinert, which is
a dielectric, immiscible fluid with a density larger than
water and a viscosity about 70% that of water. Flu-
orinert acts as a buffer layer and reduces drag on the
upper conductive layer. A sinusoidal controlled voltage
with a frequency of 0.1 Hz (or a period T = 10 s) is ap-
plied across the graphite electrodes. The resultant cur-
rent in the presence of the magnets produces a Lorentz
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force that drives the fluid layer periodically, producing
a periodic or non-periodic (weakly turbulent) response
depending on the voltage. The root-mean-square (rms)
speed, strain and vorticity of the fluid, urms, σrms and
ωrms, respectively, are adjusted by changing the driving
voltage.

The fluid is seeded with tracer particles with a diame-
ter of approximately 100 µm, evenly distributed over the
cell area of 15 × 15 cm2. The system is illuminated with
flashlamps synchronized with a high speed camera. The
frame rate of the camera varies between 10 and 60 Hz de-
pending on urms. The camera, with resolution 1024 by
1280 pixels, captures motion for about 10 forcing periods
in a centered region of the flow with dimensions 10 cm ×
13 cm. High resolution velocity fields are obtained using
a particle tracking algorithm that identifies and tracks
roughly 40,000 particles per image pair.

The experiment is performed for different drive volt-
ages that produce a range of Reynolds numbers Re, de-
fined as Re ≡ u2

rms/νωrms where ν ≈ 0.01 cm2/s is
the kinematic viscosity of water. Values of Re range
between 5 and 110. Non-periodicity is measured by
determining the velocity correlation coefficient F (T ) =
〈u(t)u(t+T )〉/〈u2〉, where the average is taken over space
and time and T is the forcing period. The value of F (T ) is
unity for the lowest Re and decreases to 0.25 for the high-
est Re. The transition to weakly turbulent flow occurs
around Re = 35 where F (T ) begins to deviate slightly
from one. Values of urms vary between 0.14 cm/s and
1.63 cm/s and increase monotonically with driving volt-
age and Re. The values of σrms and ωrms are about the
same for these experiments, and both increase with the
driving voltage. Over the whole Re range, most of the
energy in the velocity power spectrum E(k) is contained
in the range k/2π < 0.5 cm−1; this corresponds to the
characteristic injection scale (magnet spacing) of about
2 cm. Below this characteristic scale, the spectrum is
almost independent of k without any appreciable indi-
cation of an inverse energy cascade region, whereas the
spectrum decreases rapidly at higher k with E(k) ∼ k−4.

Stretching is a fundamental measure of the mixing of
fluid elements in which deformations of virtual fluid ele-
ments advected by the velocity field are measured over a
time interval, or map length, ∆t [2, 4, 5]. We compute
Lagrangian trajectories using a virtual particle tracking
algorithm that measures future (or past) particle posi-
tions. The Lagrangian trajectories determine a flow map
Φ, which contains information about the future positions
of particles that began at a given point (x, y). Defor-
mations are measured by determining the right Cauchy
Green strain tensor

Cij =
∑

k=1,2

(
∂Φk

∂xi
)(

∂Φk

∂xj
), (1)

where the derivatives are evaluated using a center-
difference scheme and the trajectories are rescaled every

FIG. 1: (Color Online) Stretching fields (see text) at con-
stant phase of the forcing (negative going zero crossing) with
red and blue indicating forward and backward in time fields,
respectively: a) periodic flow (Re = 7.8) with a map in-
terval ∆t = 10 s; b) weakly turbulent or non-periodic flow
(Re = 108) with ∆t = 1 s; c) same as in b) but one forc-
ing period later (10 s); d) reverse stretching field for the case
shown in b) with virtual dye placed in the flow and advected
by the velocity fields to demonstrate that passive impurities
do not cross lines of large past stretching.

5 frames (0.25 s) to maintain the area preserving charac-
ter of the deformation.

The stretching for each trajectory, either forward or
backward in time, S(x0, y0), where (x0, y0) denotes the
initial particle position, is determined by calculating the
square root of the maximum eigenvalue of Cij at each
point. We start with particles on a regular grid with res-
olution 256 × 256 corresponding to spacing of 0.05 cm.
In Fig. 1a, we show stretching fields for a periodic flow
with Re = 7.5, with red (or blue) indicating the intensity
of stretching for mappings going forward (or backward)
in time. The mapping interval is taken to be one forcing
period, ∆t = 10s. The sharp structures, already noted
in previous work [6], indicate regions of strong stretch-
ing over ∆t. For comparison, we show in Fig. 1b the
stretching field for weakly turbulent (non-periodic) flow
with Re = 108. Because urms is much larger in the latter
case, we choose ∆t = 1s so that the net displacements
are roughly equal, in order to compare the two fields.

The stretching fields in Figs. 1a,b are qualitatively sim-
ilar: both exhibit a moderate density of sharp lines as-
sociated with large stretching. On the other hand, the
stretching field of the weakly turbulent case does not re-
peat. For example, one forcing period later the stretching
field of the periodic flow shown in Fig. 1a is the same (not
shown). For the non-periodic flow shown in Fig. 1b, how-
ever, the stretching field is very different one period later,
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FIG. 2: a) Logarithm of stretching 〈ln S〉 vs time increment
∆t for periodic (Re=7.8, ©) and turbulent (Re=64, � and
Re=108, N) flows; the growth is exponential with dashed line
fits to the curves yielding the Lyapunov exponent. b) Areal
particle density n(∆t) vs ∆t showing dispersion of particles
seeded uniformly over a box of size L=6 cm, for different
Re: 7.8 (©), 32 (�), and 108 (N). The decay, averaged over
space and over several phases of the forcing, is exponential
and yields a normalized decay constant α indicated by the
dashed line fits to each curve.

as shown in Fig. 1c.
For periodic flow, dye concentration contours are ob-

served to align with the reverse stretching fields lines
[6, 7], i.e., dye and other passive scalars introduced into
the flow do not cross the lines of large past stretching
[6]. It has been proposed that stretching field ridges in
weakly turbulent flow may play a similar role [11]. We
test this hypothesis by observing the mixing of virtual
dye in the turbulent case and observing the alignment of
the dye with the reverse stretching field. As can be seen
in Fig. 1d, the impurity does not cross lines of large past
stretching, which serve as barriers to transport as in the
periodic case.

Stretching fields provide a quantitative measure of
mixing via evaluation of the mean stretching or the aver-
age finite-time Lyapunov exponent 〈λ〉. From experimen-
tal stretching fields such as those shown in Figs. 1a-c, we
compute the stretching S for each point on the grid and
average lnS over the full field. As in any calculation of
Lyapunov exponents [21], small displacements are neces-
sary to measure exponential growth accurately. Thus, we
rescale the particle separations in the cluster (a central
point and 4 nearest-neighbor points) every fifth frame
(about 0.1 s) to keep them sufficiently small. A mean
Lyapunov exponent 〈λ〉 of each field is obtained as the
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FIG. 3: (Color Online) Probability distribution of the normal-
ized stretching ln S/〈ln S〉 for Re: 7.5 (black), 32(red), 108
(blue). The inset shows the PDFs of 〈λ〉 = ln S/∆t for the
same Re as in a). The statistics are not significantly affected
by the transition to non-periodic flow.

slope of 〈lnS〉 versus ∆t as illustrated in Fig. 2a for a pe-
riodic state with Re = 7.8 and for turbulent states with
Re = 64 and Re = 108, respectively. The straight line
demonstrates the exponential growth behavior expected
in the measurement of 〈λ〉 ≡ 〈lnS〉/∆t.

To augment our characterization of mixing, we con-
sider another measure of the mixing properties of the
flow: the rate at which particles leave a fixed area [22, 23].
This rate is closely related to Taylor dispersion of individ-
ual particles [24]. We measure the dispersion of a uniform
seeding of particles in an area L=6 cm on a side (averaged
over an ensemble of areas chosen from the entire digitized
image), and find that the areal density of particles n(∆t)
decreases in time with an exponential dependence and a
characteristic rate α, as shown in Fig. 2b. In our imple-
mentation of this method, once a particle leaves the box,
it is discarded.

In addition to average quantities, we also consider the
normalized PDFs of ln S/〈ln S〉, averaged over all the
frames in each data set, as shown in Fig. 3 (unnormalized
PDFs of 〈λ〉 are shown in the inset). Included are several
data sets corresponding to a range of Re values spanning
the interval that includes both periodic and weakly tur-
bulent (non-periodic) flow states. The excellent collapse
to a non-Gaussian PDF demonstrates that there is no
significant change in statistics as Re increases from the
periodic to the non-periodic or weakly turbulent range.

In Fig. 4a, we show that the mean Lyapunov expo-
nent, 〈λ〉, the rate of strain, normalized (arbitrarily) by
a factor of 3 σ = σrms/3 for comparison with 〈λ〉), and
the areal particle density decay rate α are proportional
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FIG. 4: The average Lyapunov exponent 〈λ〉 (4), the nor-
malized (for comparison) rate of strain σ = σrms/3 (©), and
the areal particle density decay rate α (�), as functions of
Re. The dashed line is a linear plus quadratic fit to the Lya-
punov data. The uncertainties in the measured quantities are
estimated to be about 10%. The transition from periodic to
weakly turbulent flow occurs around Re = 35 where the veloc-
ity fields separated by a forcing period begin to differ. All of
these measures of mixing vary smoothly across the transition
from periodic to weakly turbulent flow.

to each other and increase smoothly as a function of
Re. These measures broadly characterize the stretch-
ing, transport, and ultimately the mixing properties of
the system across the transition from periodic to non-
periodic flow occurring near Re = 35. It is interesting
that these quantities vary smoothly through the transi-
tion to non-periodic flow. The monotonically increasing
trend for these various quantities is similar to the behav-
ior of dye mixing rates determined previously [7]. In that
work, the experimental dye mixing rates were about an
order of magnitude less than what one would calculate for
the rate predicted from the Lyapunov distribution [25].
For our measurements, we find that 〈λ〉 ≈ σrms/3 and
that α ≈ 〈λ〉/6. This latter relationship suggests a simi-
lar decrease in mixing here owing to the time required to
transport fluid across the cell [7], although a quantitative
correspondence is difficult to establish.

Our measurements of stretching fields demonstrate
quantitatively that, within the resolution of our data,
several related measures of mixing are proportional and
vary continuously through the transition between peri-
odic and weakly turbulent flows. We also find that the
scaled PDF of the Lyapunov exponent has a universal
shape. These observations quantitatively demonstrate
the application of material stretching concepts to weakly
turbulent fluid states. The stretching field approach ap-
pears to hold significant promise for understanding mix-
ing in other largely 2D flows, e.g., geophysical situations

where rotation, stratification, or other sources of strong
anisotropy single out a particular direction. Application
of these ideas to fully 3D flows will require improved
space and time resolution that is not yet obtainable ex-
perimentally.
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